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Abstract

The theory of positive dependence notions cannot yield useful

results for some widely used distributions such as the multinomial,

Dirichlet and the multivariate hypergeometric. Some conditions of

negative dependence that are satisfied by these distributions and which

have practical meaning are introduced. Preservation results for some

of these concepts are derived. Useful inequalities for some widely

used distributions are obtained. Results of Mallows (1969) that apply

to the multinomial distributions are extended to more distributions.

Examples are listed.

-
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1. Introduction.

Concepts of positive dependence of sets of random variables (rv's)

have received a lot of attention recently. Their study was found to

yield a better understanding of the structure of some widely used multi-

variate distribution functions (df's). In addition to this, various

useful inequalities were obtained with applications in many areas of

probatllity and statistics. Barlow and Proschan (1975), Ch. 5, include

a review of most of the work done prior to 1972. A list of more recent

references can be found in Ahmed et al. (1978).

On the other hand notions of negative dependence have received very

little attention in the literature. Some negative dependence analogs of

positive dependence concepts have been mentioned by some authors (Lehmann

(1966), Brindley and Thompson (1972), Dykstra, Hewett and Thompson (1973)

and Shaked (1977) among others). In the bivariate setting the random

vector (T1 ,T2 ) is usually said to satisfy some negative dependence

condition if (T1 ,-T2 ) satisfies the analogous positive dependence

condition. However, this method of formulation cannot apply to higher

dimensions. To the best of our knowledge Lehmann (1966) in the bivariate

setting and Mallows (1968) in the multivariate setting came the nearest

to a systematic study of negative dependence concepts; Mallows' discussion,

however, is restricted to the multinomial distribution. The development

below is in the spirit of Mallows; his results are special cases of ours.

While the first draft of this paper was being written two related

works were brought to our attention. The first work by Ebrahimi and Ghosh

(1980) discusses some negative dependence analogs of well known positive

dependence concepts. Some of our definitions overlap those of Ebrahimi and

TGhosh (1980); however, our main results differ from theirs. The second
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related paper is by Karlin and Rinott (1980). They introduce a negative

dependence notion which is closely related to one of ours and they obtain

some results which are similar to ours. Some remarks about the relationship

between these two works and the present paper will be given throughout the

text.

The main motivation for our definitions is to try to formulate the

intuitive requirement that if a set of negatively dependent random

variables is split into two subsets in some manner then one subset will

tend to be 'large' when the other subset is 'small' and vice versa. In

Section 2 we define the conditions to be discusse4. We derive some in-

equalities in Section 3 and prove some preservation properties in Section 4.

Examples are given in Section 5.

In the following "increasing" stands for "nondecreasing" and "decreasinp"

for "nonincreasing". Vectors in IRn are denoted by t (tl,...,t n ) and

t < t' means ti < ti, i - 1,...,n. Similarly t.< t' means ti < t,

i l,...,n, and 0 (0,...,0). A real function on 1n will be called

increasing if it is increasing in each variable when the other variables

are held fixed.

A rv X is said to be stochastically smalker than the rv Y (denoted

by X Y) if P(X > x) < P(Y > x) for every real x. The random vector

" (XIt...,Xn ) is said to be stochastically smaller than Y - (Y1,...Yn)

[denoted by X s_ Y] if g(X) _ g(Y) for every g E C where C is the

n
class of Borel measurable increasing functions on In. If X and Y have

the same df then we write X wtY. It is well known that X at Y if and

only if

n
(1.1) P(XcU) f P(YcU) for every upper Borel set U in IR
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[U is an upper set if x c U and x < y implies that y c U.] According

to Kamae, Krengel and O'Brien (1977), we need only consider open upper

n
sets U in Rn. It is also well known that for every random vector X,

(1.2) X + a > X whenever a > 0

and that

(1.3) X + A N X whenever A is a nonnegative random vector.

Also if P(X > 0) = 1 then

(1.4) aX >t X whenever a > 1.

See Arias and Lehtonen (1978) for an excellent review on stochastic

ordering.

If X and Y are random vectors such that X given that Y -

is stochastically smaller (larger) than X given that Y z', whenever

y C 
y ' and y and y' are in the support of Y, then we write

IY] -y .

More precisely, this means that for every upper set U, there exists a

version of P(X c U11) - *(Y) such that *(y) is increasing (decreasing)

in y on the support of Y.

A hivariate function K(.,.) which is defined on S1 x S2  (where S1

and S2 are subsets of R) is said to be totally positive of order 2

(TP2) on S1 x S 2 if K(x,y) > 0 and if

(1.5) K(x,y) K(x',y') > K(x,y') K(x',y) whenever x < x', y !_y,
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(see Karlin (1968)). The function K is said to be reverse regular "0

of order 2 (RR2 ) on. S1 x S2 if K(x,y) > 0 and if

(1.6) K(xy) K(x',y') < K(x,y') K(x',y) whenever x < x', y < y'

(see Karlin (1968), p. 12).

2. Negative dependence concepts.

Most, but not all of the positive dependence concepts discussed in the

literature have negative dependence analogs that can be obtained by changing

the direction of the monotonicity or of the inequalities which define them.

Here we define four conditions of this type which we find useful because we

have methods of identifying distributions which satisfy them. Two of them

are direct analogs of "conditionally increasing in sequence" and "positive

orthant dependent". The third has a positive dependent counterpart, but it

does not seem to have been discussed in the literature, while the fourth is

a variation of "totally positive of order two (TP2 ) in pairs".

In the case of positive dependence, one of the strongest and most use-

ful notions is that of TP2-ness in pairs; that is, the joint density or the

discrete probability function f is assumed to exist and be TP 2 in pairs

(see Barlow and Proschan (1975), p. 149). The natural negative dependence

analog then is to assume that f is RR2  in pairs. There are several

drawbacks to this notion, however. Firstly, unlike the situation in which

the Joint density (or discrete probability function) is TP2  in pairs, the

marginal densities do not necessarily enjoy the same property. A simple

3 x 2 x 2 discrete example suffices to show this. In fact, Theorem 5.1,

p. 123 of Karlin (1968) is false when TP 2 is replaced by RR2 . (It
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should also he remarked here that even in the TP2  case, one must make

some assumptions on the nature of the set {f > 0} before one can use

the above Theorem 5.1 to conclude that the marginal densities are also

TP2  in pairs: see Kemperman (1977)). A possible alternative then is to2I

assume that not only f, but all its marginal densities are RR2  in pairs.

But even under this assumption we have not been able to show that our

weakest condition (see Definition 2.3) is consequently satisfied. Ebrahimi

and Chosh (1980) claim to have proven this result; however, their proof is

based on an implication which, as will be shown below, does not hold (see

discussion after Definition 2.4).

Because of these drawbacks and since we do not always want to assume

the existence-of a density, we prefer to work directly with the measure

itself. This point of view is consistent with our other definitions in

that we do not make any assumptions on the existence of a density in

defining them. We are thus led to our first definition.

Let p be a probability measure on the Borel sets in JR. If

Il,..., are intervals in IR1 we define the sit function (Ii,. n )

by jn(I I (Ilx n )" By abuse of notation, we write V instead

of V. If I and J are intervals in iR we write I < J if x c I,

y c J implies x < y, that is, I lies to the left of J.

Definition 2.1. Let p be a probability measure on R We say that p

is reverse regular of order two (RR2 ) if

(2 .1) P(I tII2 )  1(Ij 1,I )  < V( 11I , 2)  "(Il 'I2 )

for all intervals I1 1 , 12 < 12 in It We also say that U(I 1, 2 )

is RR2 in the variables 11,12. If U is a probability measure on Rn
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(n > 2), we say that v is RR2  in pairs if n( I) is RR2  in

the pairs II for all 1 < I < < n when the remaining variables are

held fixed. The random variables T1 .... ,Tn  (or the random vector T or

its distribution function F) are said to be RR in pairs if its

corresponding probability measure on I1 n  is.

* Remarks:

(I) The obvious TP2 definitions for P are obtained by reversing

the inequality in (2.1).

(ii) Clearly, if P is RR2 (TP2) in pairs, then so are all marginals.

Furthermore, it is not difficult to show that if F is the

distribution function associated with V and if

F(tl,...,tn) = V((tlw), (t2,1,...,tnco) is the survival

function, then the functions F and F are RR2 (TP2) in pairs

in the sense of (1.5) and (1.6).

(ii) It is easy to show by a simple limiting argument that if v is

RR2(TP2) in pairs, and if p has a density f with respect to

a product measure m - mx'.. Xm n t oa-finite measures such that

f is continuous on the support of m and zero off the support

of m, then f is RR2 (TP2) in pairs.

(iv) In the n - 2 case, we have the stronger converse, namely, if

)i has a density f with respect to a product measure m - ml x M2

of a-finite measures which is RR2(TP2) on SI X S2, where Si

is the support of mi(i - 1,2), then j is RR2 (TP2),

(v) In the TP2 case, one can generalize to higher dimensions if one

makes some assumption on the set {f > 0). Let U have a

density f with respect to a product measure m M m x ... Xm of
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a-finite measures. Let S be the support of mi. Then

the support of m is S = SlX...XS . We assume that there1 n

exists S = S X .. xS such that (f > O} S = S and that f1n

is TP2  in pairs on S. Then P is TP2  in pairs. Just

use Theorem 5.1, page 123 of Karlin (1968) repeatedly to show,

e.g., that for fixed intervals ,..., in IR

g(x1 ,x2) f.. .f f(xl1,x2 x3 ,.- .,x) dm3(x3)...dm(x)

3 1n

is TP2  in xI  and x2  on § x $ The result then follows
2 2 1 2'

by a simple integration using the TP2' inequality for g.

(vi) The generalization to the RR2  case is not as simple. If one

assumes, however, that V has a density f with respect to a

product measure m - mx...Xmn of a-finite measures such-that

the density f when integrated over any n-2 intervals in Ri

is RR2  in the remaining unintegrated variables, then V is

RR2  in pairs. In terms of random variables, this can be para-

phrased as follows. Let TI,...,Tn be random variables with a

density f (with respect to a product measure of a-finite

measures). Then P is RR2  in pairs if and only if for every

I < i < j < n the conditional density of

(TVT {T k C Zk}(TiTJ)IkC\ T,]

is RR2  in tI  and tj for all choices of intervals Ik(k~ij)

in R1  Equivalently, if XI denotes the indicator function of

1, then P is RR 2  in pairs if and only if

f ... f V f(tl ,*tn)[ T dtk]

I ki,j l'"" k i,j
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is RR in the unintegrated variables ti  and t for all
2 1

choices of intervals Ik (k#i,J) in IR . By replacing

by *k in the above integral, and requiring it to be RR2 in

ti  and t whenever (0k} kij is a set of PF2  functions,

one obtains the negative dependence condition of Karlin and

Rinott (1980). It is a condition which is stronger than the

one of Definition 2.1 as can be easily seen by recalling that

the indicator function of an interval is PF2.

.1-

(vii) Clearly, if {nu is a sequence of RR2  in pairs probability
n2

measures and if Vn converges weakly to U then V is RR2

in pairs.

Definition 2.2. The rv's TI,... Tn  (or the random vector T or its

df) are said to be conditionally decreasing in sequence (CDS) if, for

i =f 1,2,...,n,

(2.2) [T i+IIT 1 = tI....,Ti = t i ] sPt(l..t)

Definition 2.3. The rv's TI,...,T (or the random vector T or its
n_

df) are said to be negatively upper orthant dependent (NUOD) if for every t,

(2.3) P(T > t) < w P(Ti > t

They are said to be negatively lower orthant dependent (NLOD) if for every t,

n
(2.3') P(T < t) <iP P(Ti < ti).

. . . . .. . . . -'-. . . . . . . . .. .. . .. . . . . . . . . . . . . . . . . . . . . .I ll . . l m l m .. . . . .
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When n 2, (2.3) and (2.3') are equivalent, but not when n > 3

(see, for example, Ebrahimi and Ghosh (1980)).

The next concept has a natural positive dependence analog, however,

we are not aware of any place in the literature in which it has been

discussed.

Definition 2.4. The rv's TI,...,T n  (or the random vector T or its

df) are said to be negatively dependent in sequence (NDS) if, for

i = 2,3,... ,n,

(2.4) [(TI ..... TiI)IT, = t i] t t

Often, to verify (2.4), one can find it easier to verify that for

i =  ,... n,

(2.4') [(Tl, .... TiT+ I .. ,Tn )IT tl] V ti

Then clearly (2.4) holds.

We now investigate some of the relationships among the various

definitions. First note that NDS implies both NUOD and NLOD and these

implications are sharp. To see this, use methods similar to Barlow and

Proschan (1975) to show that (2.4) implies for i - 1,...,n-l,

Pr(2.5) [(TI,...,T )IT+, > ti+, ] , [(TI,...,Ti) IT+ 1  > tj+l ]

whenever ti+ 1 < tjl .  (Although Barlow and Proschan assumed the existence

of a density, a modification of their proof works.) But from (2.5) it

follows that
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P (T1  > t 1 ....,T n  > tn )  < P(T 1  
•  tl, ...,T n -I >  t n_ )  P(T n  > t d

n
< P(T1 > tl,...T > tn2) w P(T > t )1 n-2 > n -in-1

n

_<.. _ P(T I • ti)
i-I

which proves (2.3). The proof of (2.4) = (2.3') is similar.

It is not difficult to construct an example which shows that

CDSt NUOD and that CDS* *NLOD and hence CDS* NDS. For example, let

P(T1=I,T 2=1) = P(T1-l,T2-2) - P(TI=2,T 2.2) - .1 and P(TI-2,T2 =1) - .7

and let T3  given T1 - 1, T2 - 1 be degenerate at 11, T 3  given

T1 = 1, T = 2 be degenerate at 1, T given T1 - 2, T = 1 be
12 ' 3 1 ' 2

degenerate at 10 and T3 given T - 2, T2 - 2 be degenerate at 1.

Then, clearly, (T1 ,T2,T3) is CDS but P(T1 > 1, T 3 > 1) - .7 > .64

= P(TI > 1) P(T3 > 1), thus (TI,T 2,T3 ) is neither NUOD nor NLOD.

Ebrahimi and Ghosh (1980) claim that CDS=*NUOD; the example shows that

this is not the case.

Next we show that NDS4 CDS. Let (TI,T2 ,T3 ) take on values on

the eight vertices of the unit cube such that

P(TI=l, T 2=f0, T3=l) = P(T1-l, T 2-1, T3-0) - .2 and the other six pro-

babilities are .1. It is easy to see that T and T are independent

and that [(T1 ,T2 )IT3 = 0] '_t ((T1 ,T2 )IT3 a 11. Thus, (T1,T2,T3 ) is

NDS. But P(T3 > 0T 1  0 0, T2 - 0) - 1/2 < 2/3 - P(T3 > OJT 1 
= 1, T2 - 0),

hence (T1 ,T2,T3 ) is not CDS.

We will shortly show that under some reasonable assumption, RR2 CDS.

22
It is not known whether RR 2 o NDS, but it does imply NUOD and NLOD. This

is clear since from the remark (ii) following Definition 2.1, we have that
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hoth F and F are RR2  in pairs. The result then follows by a

simple argument.

The implications RR2 4CDS, RR2== NUOD, RR2-NLOD, NDS__ NU0D

and NDS=:NLOD justify the consideration of the RR and the NDS
2

concepts. In Sections 4 and 5 it will be shown that many df's are RR2

or NDS and thus these df's satisfy the meaningful CDS concept and the

inequalities which can be derived from the NUOD and NLOD concepts. In

addition to it the NDS concept is intuitively meaningful by itself. We

mention, in passing, that since Karlin and Rinott's (1980) condition

implies the RR2 condition it follows that it implies the NUOD and the

NLOD inequalities (2.3) and (2.3'). Actually, Karlin and Rinott (1980)

obtained some additional useful inequalities which follow from their

stronger condition.

To justify calling (2.1)-(2.5) "conditions for negative dependence"

we have to show that they imply

(2.6) COV(TiT < 0, i < i < j-- n,

when the second moments exist.

From (2.3), it follows that P(T t > ti, Ti > t)< P(Ti I tt ) P(T > t1 )

and it is well known that this inequality implies (2.6) [see e.g., Lehmann

(1966)]. Similarly (2.3') implies (2.6) and hence also (2.4) and (2.5)

imply (2.6).

If (T1 ... Tn ) is CDS then (T 2 1T1 w tl ] st 1 ; hence cov(T1 ,T2) <0.

Thus, if (T (1)" .. ,T (n)) is CDS for every permutation w of (1,2,...,n)
I then (2.6) holds.

We close this section with a proof that RR2  in pairs implies CDS under

some reasonable assumptions. Let V be RR2  in pairs and let (T1,...,T )
2 1"'
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hi, anv random vector having p as its induced probabllitv measure.

Fix ti+ l L F and an integer 1, 1 < i < n-1. Define the set functions

v and A on the Borel subsets of IR by

v(A) P(Ti+ I > t 1+l; (TI,...,T i ) £ A)

A(A) - P((T,...,T i ) A).

Note that X is just a marginal of v. Then if {R k k=1  is a sequence

of rectangles which partition IRf  for each L and whose mesh size tends

1.I- 9,if {R1+ is a refinement of {Rik }  for all Z,
to zero as Z o and if{ik A

then it is well knowm by martingale arguments (see, e.g., Meyer (1966)). 2. "*,R

that on a set ) with (DC) = 0, v(RI )/X(R ik

decreases to (t i p .... ,ti) pointwise and in L1; moreover d

is a version of P(TI+ > ti+IT 1 = tl,... ,T, = ti). We may assume without

loss of generality that D g support X. We want to show that * is

decreasing on D. This will follow if we can assume that the support

A of X satisfies a chain condition; that is, if t c A and t' E A with

t < t', then there exist t c A such that t = t < t <... < t = t' and
-- j - -0 - -i- - - -

t differs from t in only one component. To see this, suppose that

and tI differ in only the first component. Then let

I < Ii, 1,+1 =+1 ( )+l, )  and 12, ...,Ii be any

intervals such that t c II x 12..1, _I .. x xi If p

is the marginal of (TI, ... Ti+), then since it is RR2  in pairs, we have

_. 2 (II ... .,Ii+ 1 ) P(IlI2,'" ,Ii+ 1 )  p(II 2, 'J ) p(',12,..'1+

2 . . .. . .9 i 2 .. .- _
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or that

( 1 , 2 9 .... ,Ii  1(i,2,....,. d

Note that there is no trouble dividing since the denominators are non zero.

Iterating this procedure to pass from t to t 2 , E2  to -L3,...,Sm-l to

t and then letting the intervals shrink we find that *(t) > *(t'). Now

set

-, *(t) if t E D

inffo(s); s c D, s < t) (inf 0 - c)if t D.

It easily follows that ** is decreasing everywhere and is a version of

P(Ti+L > ti+l ITl tl,...,Ti = ti).

The chain condition is easily seen to be satisfied if the support

of P is a cross product. Without some type of chain condition, we can

only show that * is decreasing componentwise on D. In this case, one

may not be able to extend 0 such that it is decreasing everywhere and is

still a version of the condition probability.

3. Some inequalities.

This section is devoted to the derivation of some inequalities which

may be of special interest. The results closely parallel those found in

Karlin and Rinott (1980), but are derived under weaker assumptions.

Proposition 3.1. (TiS..'T n) is NiJOD if and only if

(3.1) E[ w 01(Ti)J [ E[ i(Ti)]
i-l iinl
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whenever all are nonnegative and increasing. The result (3.1)

is also true if we replace NUOD by NLOD and increasing by decreasing.

Proof. Let *i(t) = X(bc V)(t), i - 1,...,n. Then (3.1) reduces to

the NUOD inequality (2.3). Since each side of (3.1) is multilinear in

the *i' the result holds for nonnegative linear combinations of such

indicator functions and hence for the general *i by a standard limiting

argument. II

Now suppose that v is RR2  in pairs. For every i, let I J Ki,

all intervals, with Ji < Ki"

Theorem 3.1. If 1 < k < n, then

(3.2) 1(Jl9 .... 9Jn ) J(ll"''..In) < )j(Jl'''J kP I k+l"'' 'I n)

x 1 k Ik+19". , n

The result (3.2) is also true if we replace all J's by K's.

Proof. We proceed by induction. If n - 2, then

p(Jl,J 2) p(It 2 ) _ j ~ J l II2) ) if k - 1

1(JiJ 2 ) (IiI 2 ) if k - 2.

The case k - 1 follows from the RR2  assumption since

p (JiJ 2 ) ij(J1 ,K2 ) u (Ji,J 2 ) (J1 ,J2 vK 2 )

0 >

j (K1J 2) , (KIK ) (Jl l , J2 (J 1 j K , J2-J K2
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and the case k f 2 is an identity.

Now suppose that (3.2) is true whenever v is a probability measure

on IRn  which is RR2  in pairs. Let p be a probability measure bn IRn+l

which is RR2  iL pairs and let I c k < n+l. Since there is nothing to

prove if k = n + 1, we may assume that 1 < k < n. Similary, we may

assume that U(J 1 ,... no n+ 0. It suffices then to prove that

P(I1 l .... , n o In+1) no (I , ., , n + 1)

(3.3) J'"'kI~' I'r~)< J J'kl 'nJ~
1 ..., -s k "no 1( ,..., k9. I ~" 'In' ~ )

since by the induction hypothesis, we have that

( InI ' . . n ' n + l )  k I " " " ' ik ' k + l " " ' " n o ' n + l )

t](Jli .... 'Jk'Ik+l '' ' ' I n ' J n + l )  - Jl....'Jn'Jn+l)

But,

IIi In Jn+l) - U(Jl 2 1n n+l ) 
-

,i(Il , .. , inl 01 .9 1° nonl

110l ..." 'J k' I k+l ... ' I no I n+l)

-- (Jl.' Jko I k+l"" I no in+l )

which is another way of writing (3.3). The jth inequality above follows

from the fact that V is RR2  in the pair j and (n+l). II

Suppose that (TI ,..8,Tn )  is RR2  in pairs.

Corollary 1. If a, 8 partition (l,...,n), then
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(3.4) P (Ti EJiicaJO) P(TI i i-av 0)

< P(Ttc Ji,fca;T iCIJ , j CB ) P(T i clIica;T I 019W C ) .

It also holds true if we replace all J's with the K's.

Corollary 2. If a, R, y partition {1,...,n}, then

(3.5) P(TicLiicaTjcJjt J cB Y ) P(Ti L ica;T CI j j kY )

'I ~~~< P(TtcLIpca;T j j , J c B ; T k C I k k ) PTcLi.iaTc j j B T J ~ C f

Afor any intervals Li, i c a. It also holds true if we replace all J's

with the K's.

If we take Ji = (--,bi] and I, = (-i,-) for i l av 0 in

Corollary 1, we get (3.5) of Karlin and Rinott (1980). If we take, in

Corollary 2, LI = [ai,bil], i E a, Jj . (--,b I and I - - for

c B jy we get (1.7) of Karlin and Rinott (1980).

Also, note that as soon as we have an inequality of the form

(3.6) P(TI <bl,...T n < b n) <P(T, <bl,...,Tk <bk) P(Tk+l <bk+l,...,Tn <b n )

it follows as in the proof of Proposition 3.1 that

(3.7) E[ Tr t(Ti)] < E( R i (T i) ] E[j k+li(T

i=1 iftl klJJ

whenever are nonnegative and decreasing. Similarly, if we have

(3.8) P(T > al,...I T > an) < P(T I > al,...,Tk > ak) P(Tk+ 1 > ak+l,...,T > a)
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then (3.7) holds for i nonnegative and increasing.

In particular, (3.6) holds if F is RR2  in pairs and (3.8) holds

if V is RR2  in pairs. In fact, if F(or T) is RR2 in pairs, then

it is MRR 2  in the sense of Karlin and Rinott (1980); i.e.,

F ( A y ) F (x /y) !F(x) F (y)

4. Closure Results.

Preservation theorems are useful for identifying negatively dependent

df's or for constructing new negatively dependent df's from known ones.

In this section we discuss some preservation results and describe a method

for the construction of negatively dependent df's.

Theorem 4.1. If T1  ..,T n  are (*) and if pl,...,n are strictly

increasing functions then 1(T1),..., (T n) are (*) where (*) is

one of the following: RR in pairs, CDS, NDS, NUOD or NLOD.

Theorem 4.2. If (TI,...,T n) and (SI,...,Sn) are independent and are (*)

then (TI.... ,T, S1 ,...,S n ) is (*) where (*) is the same as in Theorem 4.1.

The proofs of these theorems are straightforward and will be omitted.

The following preliminaries are needed for the statement of Theorem 4.3.

A univariate density f is said to be a Polya frequency function of

order 2 (PF2 ) if f(x-y) is TP2  on 1R x1R. A probability function

is PF if f(x-y) is TP on JN x34 where N {...,-1,0,1,...}. A
2 2

thorough discussion of PF2 densities and many examples can be found in

Karlin (1968).
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It will he shown in a later section that many multivariate random

varialles satisly a certain structural condition. In the next theorem

we will show that this condition implies some of the dependence conditions

that we have introduced.

Theorem 4.3. Let SoS1,...,Sn  be independent rv's and assume that

each has a PF density (or probability function). Fix s and let
2

('r1,... ,T) have the same joint df as the conditional df of (S1 ,...,S n)

given that S0 + S+...+S = s, that is,
n

, (4.1) (T1 , .... Tn) st [(S 1,...,Sn)IS 0 + SI+...+Sn as. 

Then (T1 ,...,T n) is RR2  in pairs and consequently CDS, NUOD and NLOD.

Proof. Let V be the probability measure of (T ,...,T n ) on IRn. Then

by assumption p(I I) = P(S1  Ill ...,S C I IS0 + S+...+S = s).I' n 1"' n n 1 n

Now the joint density of [((S1, . . . Is)IS0 + SI+...+S n = s] is given by

n

c ff f (si)f0(s - Sl-...-s
i=1 0 n

where c is a normalizing constant. We first show that P is RR2  in

the variables 11, 12 when the remaining intervals 13,.... In are held

fixed. According to the remark (vi) following Definition 2.1, we need

only show that

g(sls 2) c f1 (s1 ) f2 (s2 ) fs-sl 1 2 )

is RR2  in s and s2, where

i _ -- -- . 2 ,, , 1 .. ,



= . . f (s ) ' fn (sn  ) fo (r-s 3-  ' -s ) d ( ) '. .dm(s )

I I
3 n

and rn is either the Lebesgue measure or the counting measure. However,

the above is nothing but the convolution of the PF2  functions

f 3 XI3 .... n I and fo. where XA is the indicator function of the
3n

set A, and so f; is PF 2 - It easily follows then that g is RR2.

The proof that V. is RR in the variables Ii , I for all 1 < i < j < n

4 is similar. I

l Remark. Actually, it is not difficult to show that under the assumptions

of Theorem 4.3 the df of the random vector (T1 ,...,T) satisfies the

stronger condition of Karlin and Rinott (1980). The consequences of this

oh!ervation are discussed below.

It is well known (see Section 5) that the multinomial, the multivariate

hypergeometric, the Dirichlet and the Dirichlet compound multinomial random

vectors as well as some multivariate normal random vectors with nonpositive

correlations, can he represented as in (4.1). Thus, all the respective df's

are RR2  in pairs. Karlin and Rinott (1980) have shown that these df's

actually satisfy their stronger condition; however, their proofs are quite

involved and differ from one case to another. By the Remark after Theorem 4.3

these results of Karlin and Rinott (1980) follow at once.

The following theorem will be found useful in the next section.

Theorem 4.4. Assume that (T1 ,...,T n ) and (S ,...,S n ) are independent

and NDS. If all the univariate marginal densities (with respect to Lebesgue

measure) or probability functions in the discrete case of S and T are
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PF then (T + SI .. ,Tn + S ) is NDS.

Remark. Karlin and Rinott (1980) have proven a similar result. They

assumed that S and T satisfy their RR2 condition and that they

have PF2 marginals, and they showed that then S + T satisfy some

inequalities that are essentially variants of the NUOD and the NLOD

inequalities.

For the proof of Theorem 4.4 we need the following lemmas.

Lemma 4.1. Let X and Y be independent rv's and assume that Y has

a PF density (probability function). Then
2

[XIX + Y - zI s .

This lemma is actually Example 12 of Lehmann (1966).

Lemma 4.2. Let X and Y be independent and assume that X and Y

have PF2 densities (probability functions). Then

(4.2) [(X,Y)IX + Y - zI s z.

Proof. Let zI < z2. Denote by U (x,y) the upper set ((s,t): s > x, t > y}.

First it will be shown that for every (x,y)

(4.3) P((X,Y) C U (x,y) Ix + Y - z1 ) P((X,Y) C U(x,y)IX + Y - z2 }.

Let Ai - {(s,t): s + t - zi, x < s < zi - y),

B, a {(s,t): s + t - zip s >_ zi - y}, Ci . {(s,t): s + t - Zi, s < x},
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i 1,2 (see Figure 1). From Lemma 4.1 [XIX + Y - zi z; hence

P{(X,y) C CjX + Y = z1} = P{X < xix + Y = 1

> Pfx < xix + Y - z 2  = P{(X,Y) C C 2 1X + Y z z21

Similarly

ivxY I 1 x + Y -z 1  > P((xY) C B2 X+Y z)

Thus

P{(X,Y) E A1IX + Y - Y l> P{(X,Y) c A 2 1X + Y z z2

'Iwhich is (4.3).

* t

z2  C 2

1 C A
CA 2

y

B z 1  zB

Figure 1.

Now consider upper sets of the form U - UUx called funda-

mental upper domains in Block and Savits (1979). Without loss of generality
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.zssime that x < x < ... < x and Ym" Define
1 2 -- -m Y] > Y2 >m Dfn

i 1  min {i: x + Y < z

j min i > i x + Y > z
1 1 1i 2

and, by induction

(4.4) ik+ 1  min {i > jk xi + yi < z 2

k+1 kl i 1 2

(4.5) 1k+1 min {i •ik+l: x i + Y1 
• z2}

k = 1,2,...,n where n < - is the largest k such that the set on the

right hand side (RIIS) of (4.4) or (4.5) is not empty. If there are n i's

but only n-i J's define jn - m + 1 (see Figure 2 in which m - 12,

n 3, i 3, J= 6, 12 - 8, =2 - , 13 - 12, J3 - 13).

n
Let U - J U(x , Y In the following the first inequality follows

k-l k k-I

from UC U and the second one from (4.3):

P{(X,Y) E UIX + Y - z < P{(X,Y) E UiX + Y - z 1 }

n

=kY I P{ (X Y) v U(x kYJk-l ) I x + Y - z I )

(4.6)

(. 11 P{(X,Y) C U(x iy kl )IX + - z 2

= P{(X,Y) C OIX + Y - z 2 " PI(XY) E UIX + Y - Z2
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tw (xi.,y.

i 3 j =6

i 2 8 2 =11

z w
2 112 j 3 13

z

1P
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F i u r 5
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Sinc'e open tipper sets can be approximated by fundamental tipper domains (B]oc.k

and Savits (1979)) it follows from (4.6) that for every open upper set U'

P{(X,Y) E UIX + Y - z 1 } < P{(X,Y) E UIX + Y - z 2 }

and the proof of the lemma is complete by (1.1). H

Lemma 4.3. Let X = (Xl,...,Xm) and Y= (Y ... ,Y) be independent

and assume

(4.7) [(X 1 ,... X 1 )IX - x j x

and

(4.8) [( 1 ... Ym-i~m - Ym] st

Furthermore, assume that X and Y have PF2  densities (probability

functions). Then

[(X + Y1 '... XM- 1  )jX + Ym z mI s+t zm

Proof. Clearly, for any increasing function g,

1-'[)(X + j.' Y )X + Y-z Fox~
I '''rn-i Y 1 )IX + Y z = F4(X M)IXm + T m " ZM

where t(xmy) = EgR(XI + Y1 ,...,X M_1 + YM1l)IXm - Xm, Y m - Y m]  However,

b(xmy ) decreases in xm and in y because of (4.7), (4.8) and in-

dependence. Thus, by Lemma 4.2, E[ (XmtYm) IXm + Ym n zmI decreases in

m

Proof of 'leorem 4.4. Let i c {l,...,n-l}. Substitute m - I + I in
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uI mma 4. 1 to obtain

[(,I + S1 ..... T. + S)iTi+l + Si+l = Zi+l t Zi+l

that is, T + S is NDS.

5. Examples.

5.1. The multinomial df.

fLet (T1 P ... IT ) have the Joint probability function with parameters
n

(Npl ... pn)

tt

P(T 1 = t I ,... ,T = t ) N p
n n n j t

t ... tn !(N- t

n
n N- t n

in iili1- p )  t t  0_O . t t  N,

n

where p1 > 0 (1 = 1,...,n) and 0 < pi < 1.
i-i

The multlnomial df is the conditional df of independent Poisson

rv's given their sum. Thus, by Theorem 4.3 the multinomial df is RR2

in pairs and hence it is also CDS, NUOD and NLOD. By Remark (Mii) the

loint probability function of (TI,...,T n) is RR2  in pairs. By the

discussion after Theorem 4.3 the multinomial df satisfies the RR2

condition of Karlin and Rinott (1980).

To show that (T1 , ... T) is NDS it is enough to show that for

0 _ t < N-i,

n-ln (TI ... Tn-1lTn n
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!o,, ise then, by symmetry one has (2.4'). The left hand side (I.11S) of

(j.i.l) has an (n-1)-dimensional multinomial (if with parameters

(N-t nq I " - 'qn-I ) and the right hand side (RI(S) of (5.1.1) has the

saIme df with parameters (N-t-1, ql,...,qn) where q P/(1-P

Thus,

(5.1.2) LHS (5.1.1) s RHS (5.1.1) + (S 1 ,....S

where (S1 ... ,S n 1 ) has a multinomial df with parameters (l,ql,...q n-)

and the sum on the RHS of (5.1.2) is of independent random vectors.

Inequality (5.1.1) follows now from (5.1.2) and (1.3).

let (X1, ... Xn ) he th sum of independent n-dimensional, not

necessarily identically distributed, multinomial random vectors, that is,

let (X I .... n ) have the probability generating function

M N t
TF (p i tU 1+ ..+ p n~ N

L-1

n

where pit > 0, (i = 1l....n), 0 < i pit < 1 and NI > 1 (. = 1,2,... m).
i-1

The tnivariate marginal df's of a multinomial df is a binomial df.

Since the binomial df has a PF2 probability function it follows from

Theorem 4.4 that (X1,...,X n ) is NDS. Hence (X1 .... IXn) is also NUOD

and :1,0)), that is,

nP(X 1 > Xis,...,IXn > xn ) < i t_1 P(X i •x )

and

nP(X I < x 1 , .... x <n x ) < it P(Xt  x)

These inequalities are stated unproven in Mallows (1968). Compare also

• ehiann (1966), pp. 1143, 1144 and 1151.
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. fialt Ivari.it_ normal.

i..t T = ('I .. 'F ) he ;; mui lt.variate, svrimrri c normal random

v..tor with Corr(TiIT) o < 0, 1 < , < n . Then r > - (n-I) -

Ve will show that T is RR2  in pairs.

Using Theorem 4.1 assume, without loss of generality, that ET 0

and Vnr(T) - l, 1 ],....n. l.et Y ,...,Y be independent identically
i n

distributed normal rv's such that EYi = 0 and Var(Y) 1-0 (i =,...,n)

and let YO be an independent normal rv with EY0 - 0 and

Var ) = (--) ) (1+ (n-1)o). Then
0

, (T ...,T n) (YI ... yn ) IY 0 + Y I+...+ Y = 01.

Sincv any normal density is PF it follows, from Theorem 4.3, that T
* 2

is RR,) In pairs.

In fact we can obtain a stronger result. If the correlation matrix

of T is of the form

S(r -1/ 1/2

nn

n

.,r 1n and r i- > n-I then T is RR 2  in

p.a i rs.

'To show it note that every matrix of the form (5.2.1) can he the

correlation matrix of a multinomial random vector, X = (XIS .... Xn) , say.

CQ)t , = 1,2,..., be a sequence of independent random vectors

distributed as X. Clearly Y(m) X ) is a multinomial random

vector with correlation matrix (5.2.1). Normalizing Y(m) such that it



i,.i- zero means and unit variances, it converges In distribution, Jv Ow

,ilt iv.iri Ate central limit tlieoren, to a multivariate norma] random

v.'tor with correlation matrix (5.2.1). Iy Remark (vii) the limit In

distribution of RR2  in pairs random vectors is RR2  in pairs. The

assertion in the preceeding paragraph now follows. The previous result

that deals with the symmetric multivariate normal df with negative

correlations 0 is obtained by taking r - 1 - p In (5.2.1).

Every multivariate normal random vector T with nonpositive

correlations is NDS. It is easy to verify (2.4') directly using, (1.2).

Thus T satisfies (2.3) and (2.3').

5.3. Multivariate hypergeometric.

Let (T 1 .... T ) have the probability function

nn

1(T= t t1 = t > 0, nn n) "N) L l M- t.I i- - -

with positive Integer-valued parameter vector (N, M1 ,..., n' M) [see

.Johnson and Kotz (1969].

The multivariate hypergeometric df is the conditional df of

independent binomial rv's given their sum. Thus, by Theorem 4.3 the

hypergeometric df is RR2 in pairs and hence it is also CDS, NUOD

and NLOD. By Remark (iii) the joint probability function of (T,...,T n )

is RR in pairs. A special case of this fact was observed by Lehmann
2

(1966), p. 1144. See also Ebrahimi and Ghosh (1q80). By the discussion

after Theorem 4.3 it follows that this df satisfies the RR2 condition

of Karlin and Rinott (1980).
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We will show now that T is NI)S by provinp that, for 0 < tn <_ N-1,

( .> f(T ,Tn)IT = t + I].(5 3 ( l . . n-l) I n  tnJ ..... l n

Then, by symmetry, (2.4') follows. Since the random vectors on each side

of (5.3.1) have multivariate hypergeometric df we actually have to show

that

(5.3.2) U v

where I = (U1 ... ,[In _1  has hypergeometric df with parameters

(N + 1, Mnl ... Mn, H + 1) and V - (V 1 .....V nl) has the same df with

parameters (N, M I ...',M M) where N=N - tn  and M n- t -1.

Denote m = n - 1.

Thinking about U as the number of individuals in the sample in

Category i (i = 1,...,m) it is easy to see, by conditioning on the category

of the first individual chosen, that

Mt (it))(M(UI ...,U) st (W1t ( , . ) W + 1, W ).. W) if the first' "9"" .-i 'W+ ' 9.m

idividual is in category 1, f = 1,2,...,m, and that (i1 ,....,Urn) st (VI,....V)

if the first individual is in neither of categories 1,2,...,m, where

(W( ) ' ..
' ,W M) has a multivariate hypergeometric df with parameters

Im
(N, M I ... ML.  , Mil, M +, ...,M m, M). Thus for proving (5.3.2) it

suffices to show that

1 L>t 

We will prove (5.3.3) when t - 1; the proof for the other L's is

M (1)
similar. Omit the superscript 1 and consider (Wm...,Wm (W ' m
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i.-hich has : hyperpeometric distribution with parameters

(:, :lI ' , ' " ni-I' .I n

Write

1(V1  .v. , V- v)

.m .

MN

m n in
('''''Vmn "N - v  

- v ' '"
4 - v, M - N - 1 + i v

Then, it is easily seen, that the rv's V 1 ,... ,V can have the following

interpretation: First divide a population of size A into a group of size

and another group of size M - N. Next, choose at random M individuals1

and let V1  be the number of them in the first group (of size N), then

choose at random M2  individuals of the remaining M - M individuals and

let V2  be the number of them in the first group. Continuing this way,

finally choose Mm individuals of the remaining M - M1 - ... - Mm_1

individuals and let Vm  be the number of them in the first group.

The rv's W1 .... ,Wm may have a similar interpretation.

With these interpretations it is easily seen that if the first

Individual chosen in the 'V experiment' is not in the first group then

V. W s (WI + 1, W2 ... ,W ), where the inequality follows from (1.2).

otherwise (V1I ..... M ) at (W, + , W2,...,Wm). Thus, unconditionally

V < (W + 1,..., ) , which proves (4.3.3) when f 1.
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4 The l)irichlet distribution.

Let = (T ... ,T ) have the density
n

n
n=O n090-1n 0j-1 nl

l'"'n n (1nf(tl .... )( Itl d tn I , -> t <

J-1 jJ0 j=1

where the parameter vector (0,0,,. 0 n) satisfies 0 > 1, j = 0,1,...,n.

The Dirichlet (if is the conditional df of independent gamma rv's

given their sum. Thus, by Theorem 4.3 the Dirichlet df is RR2  in pairs

and hence it is also CDS, NUOD and NLOD. By Remark (iii) f is RR2  in

pairs. Special case of this fact is Example 10 (i1) of Lehmann (1966). See

also lEbralml and (;bosh (l80). By the discussion after Theorem 4.3 it

follows that this df satisfies the RR condition of Karlin and Rinott
2

(1980).

To prove that T is NDS it is enough to show that for t < t'
n n

(5.4.1) [(T1 .... TlT = )T t [(T1 ..... T )IT = t, '

I n-1 n n - 1" n-1 n n

then (2.4') follows.

It is easily seen that

(l-tn)l (Wl,.. ", ,i~)ITn = tn Ist (l-tn)-l[ (Tl ..... Tl )ITn  tn].

Since I - t > I - t' (5.4.1) follows from (1.4).
n n

5.5. Dirichlet compound multinomial df.

Let T - (T1 ... ,To) have the probability function
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N! r( Y ) n r (t +o )

P (T I  = t1 ..., T n  = tn) = n0

1'(N + 0.)

j=0

n

r(N- I t + 0O )

X , t > O, t < N,n -- J'l -

(N - I t )'r O )
J-10

where N is a positive integer and 0 > 1, j - 0,1,...,n [see Johnson

and Kotz (1969)1.

The l)irichlet compound multinomial df is the conditional df of

independent Pascal (negative binomial) rv's given their sum. Thus, bv

Theorem 4.3 this df is RR2  in pairs and hence it is also CDS, NUOD

and NLOD, and by the remark after Theorem 4.3 it satisfies the RR2

condition of Karlin and Rinott (1980).

To show that T is NDS it suffices to prove that

(5[.)ti1 .... 9T nl)ITn = t n ]  t in'

then (2.4') follows by symmetry. But the random vector in (5.5.1) has

the l)irichlet compound multinomial df with parameters N - tn,

00 ... ,00n. Using this fact it is easy to verify (5.5.1).

5.6. Df's supported by negatively tilted surfaces.

In this subsection we illustrate two simple examples of such df's in

1y . The general idea then should be clear and will not be detailed here.

Let (TI, T2,T3) have the uniform df on the surface

S(tlpt 29t 3) > (0,0,0): t1 + t2 + t3 11. Then [(TIT 2)IT3 - t3] has
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a uniform df on the segment {(tl,t2 ) > (0,0): t + t2 = I- t }

which is clearly stochastically decreasing in t3 . By symmetry (2.4')

holds, hence (TI ,T2 ,T3 ) is NDS. Clearly (TI ,T2 ,T3 ) is also CDS.

Similarly, if (TI,T 2 ,T 3 ) have the uniform df on the surface of

the unit sphere intersected with the positive (or the negative) orthant

then (TI,T 2 ,T 3 ) is NDS and CDS.

5.7. NUOD df's in reliability theory.

Buchanan and Singpurwalla (1977) considered the class of nonnegative

multivariate new better than used (NBU) df's that satisfy, for all

s > (I, t > 0,

(5.7.1) P{TI > s + tl,...,T n > s + t n < P(T1 > Sl,*** T > s )

x P(T 1  > tl, .... Tn  > t n

It is well known that, when n = 2, (5.7.1) implies that (TI,T 2) are

negatively quadrant dependent, that is

(5.7.2) P(TI > tl, T 2 > t 2 ) < P(Tl I t1 ) P(T 2 > t2 ).

W11 will show, by induction, that in general (5.7.1) implies that

" .is NUOD. From (5.7.2) we know it is true when n - 2. Assume

that

n-1

('.7.3) P(TI  t ,...,Tn_ 1 
> t n I) < w P(T • t ).1 1 n- n-i -1
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Substitute s1  s2  Sn~ t 0 in (5.7.1) and use (5.7.3)

Lo. obtain

P(T I t 1 ,...,T 1 > t nl T n> s) n P(T n> s)n P(T 1 > tit ....T n-1 > t n-

nn-I

< P i (T1 t) P(T > sn),

thait is T Is N!D



35

References

[] Ahmed, A.II.N., Langberg, N.A., Leon, R.V. and Proschan, F. (1978).
'wo concepts of positive dependence, with applications in multivariate
analysis. Technical Report, Department of Statistics, The Florida
,State University.

121 Arias, 1. and Liehtonen, T. (1978). Approximating many server queues
by means of single server queues. Mathematics of Operations Research,
-1, 205-223.

131 Iarlow, R.F. and Proschan, F. (1975). Statistical Theory of Reliability
and Life Testing: Probability Models. ilolt, Rinehart and Winston,
New York.

[4] Block, i.W. and Savits, T.H. (1979). Multivariate IFRA distribution.
Ann. Prob., to appear.

151 Brindley, E.C. and Thompson, W.A. (1972). Dependence and aging aspects
of multivariate survival. J. Amer. Statist. Assoc., 67, 822-830.

16] Buchanan, W.B. and Singpurwalla, N.D. (1977). Some stochastic
characterizations of multivariate survival. The Theory and Applications
of Reliability (Eds.: C.P. Tsokos and I.N. Shimi), 329-348.

(7] Dykstra, R.L., Hewett, J.E. and Thompson, W.A. (1973). Events which are
almost independent. Ann. Statist., 1, 674-681.

(8] Ibrahimi, N. and Ghosh, M. (1980). Multivariate negative dependence.
Technical Report, Department of Statistics, Iowa State University, Ames,
Iowa.

19] Johnson, N.L. and Kotz, S. (1969). Distribution in Statistics, Discrete
Distributions. Wiley, New York.

1l10 Kamae, T., Krengel, U. and O'Brien, G.L. (1977). Stochastic inequalities

on partially ordered spaces. Ann. Prob., 5, 899-912.

1l1 Karlin, S. (1968). Total Positivity. Stanford University Press, Stanford.

1121 Karlin, S. and Rinott, Y. (1980). Classes of orderinps of measures and
related correlation inequalities. II. multivariate reverse rule distributions.
Technical Report, Department of Mathematics, Stanford University.

1131 Kemperman, J.lH.H. (1977). On the FKG-inequality measures on a partially
ordered space. Proc. Kon. Ned. Akad. Wet., Amsterdam, Series A, Vol. 80 (4),

313-331.

114] Lehmann, E.I,. (1966). Some concepts of dependence. Ann. Math. Statist.
43, 1137-1153.

115] Mallows, C.L. (1968). An inequality involving multinomial probabilities.
Biometrika, 55, 422-424.



36

[I(] Meyer, P.A. (1966). Probability and Potentials. Blaisdell, Waltham,
Mass..

[171 Shaked, M. (1977). A family of concepts of positive dependence for
bivariate distributions. J. Amer. Statist. Assoc., 72, 642-650.

MN

1I
S.

i.

' . . .



I DATE


